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Cao et al. [2]
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Characterizing Quantum Liquid Phases of Magnetic 
Insulators
• Quantum liquids are a broad family of 

quantum mechanically induced exotic 
phases of magnetic insulators

• Conventional phases: Luttinger 
Liquids (LLs), quantum spin liquids 
(QSLs), etc. 

• Novel unconventional: Sliding LLs, 
Bose-LLs, etc.

• Characterized by lack of magnetic 
ordering, (e.g. via geometric frustration), 
exotic excitations such as spinons

• Highly variable phenomena makes it 
difficult to positively define a quantum 
liquid

Francis Pratt/ISIS/Science and Technology Facilities Council
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Raman Spectroscopy Probes Magnetic Excitations
• Inelastic Raman scattering with 

London-Fleury exchange
• Incident photon  excites virtual 

particle-hole pair
• Pair annihilates to scattered 

photon  and magnetic 
excitation)

• Raman shift 

ωi

ωf

ω = ωf − ωi

Wulferding et al. [6]
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• Low energy Raman shifts well below charge gap (electronic DoF 
frozen out)

• Raman operator  
• Raman spectrum 

• Fourier transform of time autocorrelation of  on ground state
• Analogous to neutron scattering at  

• Spectral equivalence:  and  give same inelastic 
spectrum; 

R
I(ω)

R
q = 0

R R′ = R + CH
R ≅ R′ 

Raman Spectroscopy Probes Dynamics
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• London-Fleury photon-induced superexchange operator [4]
•  : incident/scattered photon polarization
•
•  : prefactor, on order of exchange couplings 
• Dynamics of  give insight into spin-spin correlations

̂ei,s
r12 = r1 − r2
A(r12) J

R

Raman Spectroscopy Probes Spin Dynamics
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Ba4Ir3O10 Measurements Suggest Quantum Liquid 
Candidacy
• Magnetic insulator
• Spin-orbit coupled Ir ion with effective 

spin-1/2
•  between -766 K and -169 K (AFM; 

)
• Linear heat capacity at low  
• No magnetic order down to 0.2 K
• 2% non-magnetic substitution of Ba to Sr

• Precipitates long range order at 130 
K

• No more linear  features

θCW
J > 0

T

T
Ir3O12 trimers (red ovals) seen as zig-zag chains (purple) 

with interchain couplings (blue, dashed) [2]
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Raman Spectrum of (Ba1-xSrx)4Ir3O10 
•
• Imaginary part of Raman operator 

susceptibility
• Spectrum taken in  polarization 

(perpendicular to chain axis)
• Peaks are phonon modes

• Narrower linewidth means longer 
phonon lifetime

• Usually, impurities damp phonon 
lifetime

• Here, 2% substitution gives longer 
phonon lifetime!

• Broad hump feature in pure sample 
spectrum (fractional excitations?)

I(ω) = χ′ ′ (ω)/(1 − e−βω)

bb

Sokolik et al. [5] 10



Theoretical Model: Decoupled 1D Chains
• Tractable theoretical model
• NB: Ba4Ir3O10 is neither 1D nor 

consisting of 1D chains
• Claim: at low , 1D spinons 

fruitfully capture dynamics 
• Frustrated  AFM model 

(fractional excitations from g.s.)

T

J1, J2
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Raman Operators for Zig-Zag Chains
• Compute Raman operator for 1D zig-

zag chain with  polarizations
• Straight chains

•  : 
•  :  for  

polarizations, else 0
• Zig-zag chains

•  :  for , else 0
•  :  for 

bb

J2 = 0 R ≅ 0
J2 > 0 R ≅ RD bc, cb

J2 = 0 R ≅ R1 + R2 cc
J2 > 0 R ≅ R1 + R2 bb
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 Spectrum Inconsistent with Ba4Ir3O10 SpectrumRD
•  produces a sharp, 

temperature sensitive peak [3]; 
no broad hump

• Tensor network calculations 
(DMRG, TEBD) show similar 
feature

RD

13

Sato (bosoniztation) [3]:  
RD gives sharp peak response

 spectrum also show sharp peak ( ) 
(preliminary TEBD calculations using TeNPy)
RD T = 0



Nontrivial  Spectra Require Zig-Zag chains and  bb J2 > 0
•  qualitatively inconsistent with 

experiment
• Spectral equivalence: can 

choose one of 
•  produce nontrivial broad 

hump in spectrum within mean 
field in  polarization

RD

Rν
Rν

bb
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Fermionization of Raman Operators
• Jordan-Wigner fermionization of 

spin operators
• Spinon excitations are the correct 

excitations in the quantum liquid of 
this material & the 1D toy model

• Apply to Raman operator and FT
• NB: wavevectors normalized to 

projection of bonds onto chain axis
• Density-density interaction with 

some momentum dependence, 
 ; e.g. 

• Approximate to free spinon theory

h(ν)
kk′ q h(1)

kk′ q = cos(q) 15



• Time evolve spinon operators
• Evaluate correlation function on g.s

•  is quadratic in 
•  is quadratic in 
• 8 fermionic operators in correlation function
• one-particle-hole excitations (zero total momentum) do not contribute within mean 

field
• Wick’s theorem: evaluate using 2-pt correlates
• Intensity arising from  given as integrals in momentum space

Rν S
S ck

Rν

Spinon Mean Field Theory: Computing I(ω)
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Mean Field Spectrum of Ba4Ir3O10 
• Broad hump feature arising from 

4-spinon continuum using 1D 
spinon mean field at low 

•  (dashed, blue)
•  (dot-dashed, cyan)
• Both mean fields capture 

hump!
• No hump after substitution 
• Captured by 75 K

T
R1
R2

Jeff /kB ≈
Sokolik et al. [5] 17



Ba4Ir3O10 Susceptibility Temperature Dependence

Sokolik et al. [5]

• Temperature dependence of  Raman 
spectrum

• Broad hump and broadened (shorter 
lifetime) phonons persist up to higher 
temperatures

• Similar hump in sister compound above 
Néel temperature 

• Experiment always at low  relative to 
true effective spinon theory 

• Interactions and 3D nature of material 
important at intermediate experiment  

bb

T

T
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Mean Field Susceptibility Temperature Dependence
• Hump feature persists at high 

temperatures, but shape 
changes (not seen in experiment)

• Qualitative differences between 
 theories quantify 

breakdown of mean field theory 
at high temperature 
( )

R1, R2

kBT/Jeff > 1

Sokolik et al. [5]
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• Self-consistency equation (Brenig [1]) relates  to a difference between microscopic 

• Destructive interference of nn and nnn tunneling
•  of 75 K permits  of 324 K

• Range of  consistent with Curie-Weiss measurements
• Phonon broadening due to scattering of phonons and spinons

• Observed in spin-orbit coupled materials (e.g. Sr2IrO4 [7])
• Similarly observed here

• Broadened phonons persisting down to low  consistent with magnetic quantum liquid
• Narrowing of phonons after Sr substitution further supports quantum liquid behavior

Jeff
J1, J2

Jeff /kB J1,2/kB
J1, J2

T

Microscopics and Phonon Broadening
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• Broad hump arising from 4-spinon continuum in 1D toy model
• Zig-zag chain +  necessary & sufficient to capture hump within 

mean field for  polarization
• Two equivalent yet distinct mean field approaches ( ) both 

capture hump and temperature dependence
• Strong phonon damping from phonon-spin coupling via spin-orbit 

interaction
• 2% non-magnetic Ba-to-Sr substitution precipitates magnetically ordered 

phase without hump, phonon damping: spinon features are fragile to 
disorder

J2 > 0
bb

R1, R2

Conclusion: Raman signatures for spinons in possible 
spin-orbit coupled quantum liquid Ba4Ir3O10
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