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The dynamical response of a system is often specified by its Hamiltonian 𝐻 and ground state |𝜓⟩. A
counterexample to this rule of thumb is the inelastic Raman scattering spectrum 𝐼 𝜔 :
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Above, 0𝒆&,, is the incident (scattered) photon polarization. 𝐼(𝜔) is given by the ground state
expectation value (denoted by ⋯ )) of the dynamical correlation function of the Raman operator 𝑅
[1]. Here, 𝐼(𝜔) is specified by three objects: 𝐻, |𝜓⟩, and 𝑅 [2]. Generally, 𝐴(𝒓!") is difficult to
determine, but ratios of 𝐴 on different bonds are of the order of the ratio of the respective
exchange couplings [1]. The Raman response of a system is specified by a third non-trivial input, 𝑅,
which considers photon polarizations that necessarily couple to spatial degrees of freedom. Due to
this polarization factor, the Raman operator inherits a rich structure from the spatial geometry of
the system. This structure endows 𝑅 with symmetries that are different from the Hamiltonian. As a
proof of principle of this rich structure, we may consider Raman scattering of the zigzag chain.

Raman Scattering Probes Magnetism and Geometry
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Consider an effective spin-1/2 zigzag chain with effective 1D
nearest-neighbor antiferromagnetic Heisenberg interactions in
an applied magnetic field

𝐻) = 𝐽;
-

𝑺- ⋅ 𝑺-.! − ℎ/;
-

𝑆-/

For complementary photon polarizations, the Raman operator
for this system is given by an alternating (dimerization) operator

𝑅0 ∝;
-

−1 -(𝑺- ⋅ 𝑺-.!)

Clean Zigzags: Gapless Magneto-Raman Response

Zigzag Domains Walls: Gap Closes in Applied Field

At zero applied field (ℎ! = 0), the mean field Raman spectrum is a
gapped 2-particle continuum that qualitatively follows the line shape
of the 𝑅" spectrum. The gap occurs at a frequency 𝜔# = 𝑣$ (𝜋/𝐿%)
where 𝐿% is size of the zigzag domain (unit lattice spacing) and 𝑣$ is
the spinon velocity. At finite fields (ℎ! > 0), we find a more surprising
result: at a small finite field ℎ# =

&
'
𝑣$ (𝜋/𝐿%) the gap in the spectrum

closes (Fig. 3).

The presence of the gap in the 2-particle continuum in addition to its
closing at small finite fields is especially surprising since in
computing the scattering spectrum, neither the Hamiltonian nor the
ground state are altered. Indeed, the only difference in these
responses is the presence of zigzag domain walls. Such domain walls
are non-magnetic crystal defects, and naively one would not expect
such a drastically different response in the presence of applied
magnetic field.

Although this astonishing response to magnetic fields is well
captured within the mean field theory, a valid concern is that the
response is an artifact of the theory rather than a novel physical
response. Using beyond mean field approaches, however, one can
show that this is indeed a novel magnetic response rather than an
artifact of the theory.

Zigzag domain walls not only possess an anomalous magnetic field response, but they are further
characterized by a ℤ" character. When the spatial separation between domain walls becomes small,
the anomalous magnetic field response is no longer observed.

Zigzag Domain Walls have a ℤ𝟐 Character

Raman Correlator

Singular Magnetic Response of Non-magnetic Defects 
Indicates Presence of Spinon Liquid

Our mean field free spinon picture approach can also
be seen as a limiting case of a bosonized theory with
Luttinger parameter 𝐾 = 1. To extend our results to
interacting Hamiltonians, we also consider 𝐾 ≠ 1. The
gap associated with domain walls persists at all 𝐾.

The anomalous response of non-magnetic topological
defects to applied fields indicates the presence of a
spinon liquid. We find that bosonic magnon
excitations, unlike fermionic spinon excitations, lack
the anomalous, singular magnetic field response
presented here. Whereas an applied magnetic field
shifts the Fermi momentum of a spinon Fermi
surface, and may tune gapped excitations to become
gapless, bosonic magnon excitations do not
experience such an effect. Within linear spin wave
theory, we find 1D magnons lack an anomalous
magnetic field response probed by Raman scattering.
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Fig. 3: (Top) Cartoon depiction of clean 
zigzag crystal lattice from which 𝑅!" may 
arise. (Left) The corresponding numerically 
computed inelastic Raman scattering 
spectra for finite sized zigzag spin with two 
domain walls. At zero field, the presence 
of domain walls shifts the finite size gap to 
higher energy. This shift persists up to a 
small critical field ℎ#. Spectral weight shifts 
linearly with field above ℎ$ = ℎ#. [3]

Fig. 2: (Top) Cartoon depiction of clean zigzag crystal lattice from which 𝑅! may arise. (Left) The corresponding 
numerically computed inelastic Raman scattering spectra for finite sized clean zigzag spin-1/2 chains (𝐿 = 80 sites, open 
boundary conditions) with zero domain walls. Spectral weight shifts linearly with field above ℎ" = 0. [3]

Fig. 4: Numerically computed inelastic Raman scattering spectra for 
a finite size (𝐿 = 80) zigzag chain with zero domain walls (solid, 
blue), two domain walls (solid, orange), and doubled domain walls 
(dashed, green). At zero applied magnetic field, doubled domain 
walls do not open the same gap as isolated domain walls. [3]

To capture the effects of defects in the Raman operator, we consider the Raman response of a
general class of Raman operators 𝑅 with couplings given by an arbitrary function of space 𝑔-, 𝑅 =
∑- 𝑔-𝑅- with 𝑅- ≡ 𝑺- ⋅ 𝑺-.!. The operator 𝑅 can be rewritten as a weighted sum of its Fourier modes
as 𝑅 = ∑7 C𝑔7𝑅7 where 𝑅7 = ∑- 𝑒&7-𝑅- where C𝑔7 are the Fourier modes of 𝑔-.

The Raman response of 𝑅 is then given by weighted sums over the Raman correlation function
C88 q,𝜔 :

𝐼 𝜔 = ∑7 C𝑔7
"𝐶99(𝑞, 𝜔), 𝐶99 𝑞, 𝜔 = ∫ 𝑑𝑡 𝑒&'( 𝑅7 𝑡 𝑅$7 0 )

Fig. 5: Finite momentum Raman response for free spinons, 𝐶%%(𝑞, 𝜔). At the 
2-particle mean field level, the Raman spectrum is a weighted sum over 𝐶%%. 
The Raman response of the clean zigzag spin chain is a cut at 𝑞 = 𝜋. In the 
presence of defects, the Raman spectrum contains cuts at Fourier modes of 
the disorder profile 𝑞 ≠ 𝜋. For domains of size 𝐿/3 in a finite chain of size 𝐿, 
the most significant contributions come from 𝑞 = 𝜋 ± 3𝜋/𝐿. [3]

Raman Scattering of Quantum Liquid Candidate Ba4Ir3O10

Raman scattering has been utilized to demonstrate signatures for fractionalized spinon excitations
in quantum liquid candidate Ba4Ir3O10 [4]. This material is a 2D layered spin- 1/2 magnet featuring
1D zigzag chains coupled via trimers (Fig. 1a). For incident and scattered photon polarizations
aligned orthogonal to the chain axis, the inelastic Raman scattering spectrum shows phonon peaks
superposed on a broad hump (Fig. 1b). This broad hump is fruitfully captured by a 4-spinon
continuum from two equivalent mean field theories (Fig. 1d). In the presence of non-magnetic
disorder, the hump disappears, and phonon linewidths narrow (Fig. 1c) which indicate the fragile
quantum liquid state is no longer present.

Fig. 6: (Top to bottom) Raman responses from mean field and from the low 
energy effective theory at Luttinger parameters 𝐾 = 0.75, 0.5 corresponding 
to XXZ and Heisenberg spin models respectively. The clean zigzag case (left, 
blue) shows gapless excitations at zero field and a gap which opens in applied 
field. In the presence of defects (right, orange), a gap opens at zero field. In 
applied field, however, this gap closes. To best compare with our finite size 
(𝐿 = 80) numerics, we show the spectra when 𝑞 = 𝜋 ± 3𝜋/80 is probed. [3]

Fig. 1 Raman spectra of quantum liquid Ba4Ir3O10
(a) Crystal structure of Ba4Ir3O10
(b) Raman scattering spectra in bb photon polarization featuring broadened phonon peaks on top of a broad hump, which is 

captured well by a four-spinon continuum in quantum liquid mean field theories (dashed, blue and dotted-dashed cyan)
(c) Spectra for sister compound with non-magnetic disorder shows narrower phonon linewidths and absence of broad hump
(d) Spinon Raman response computed within two equivalent mean field choices at 𝑇 = 10, 50, 90, 130, and 170 K. 
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