Raman Responses with and without Topological Defects

Sami Hakani

Group of Itamar Kimchi

A Quantum Many-Body Handshake

Weizmann Institute of Science, 22 December 2022

Special thanks to the organizers!

Outline

Special thanks to the organizers!

Raman spectroscopy probes dynamics of magnetic excitations

Loudon-Fleury superexchange
$$R = \sum_{\mathbf{r}_1, \mathbf{r}_2} A(\mathbf{r}_{12}) (\mathbf{\hat{e}}_i \cdot \mathbf{r}_{12}) (\mathbf{\hat{e}}_s \cdot \mathbf{r}_{12}) \mathbf{S}_{\mathbf{r}_1} \cdot \mathbf{S}_{\mathbf{r}_2}$$
 $\mathbf{r}_{12} = \mathbf{r}_1 - \mathbf{r}_2$

Prefactor Scales like exchange on bond

Incident/scattered Photon polarization

$$I(\omega) = \frac{1}{2\pi} \int dt \ e^{i\omega t} \langle R(t)R(0)\rangle_0$$

Raman spectroscopy can probe various magnetic systems

- Geometrically frustrated magnets
 - Phys. Rev. B 77, 174412, N. B. Perkins and W. Brenig
 - Phys. Rev. B 56, 2551, W. Brenig
- Spin-Peirels
 - Phys. Rev. B 54, R9635(R), V. N. Muthukumar, C. Gros, W. Wenzel, R. Valentí, P. Lemmens, B. Eisener, G. Güntherodt, M. Weiden, C. Geibel, and F. Steglich
- 1D magnets
 - Phys. Rev. Lett. 108, 237401, M. Sato, H. Katsura, and N. Nagaosa
 - Phys. Rev. Lett. 77, 4086, R. R. P. Singh, P. Prelovšek, and B. S. Shastry
- Kitaev systems
 - Phys. Rev. Lett. 113, 187201, J. Knolle, Gia-Wei Chern, D. L. Kovrizhin, R. Moessner, and N. B. Perkins
 - Phys. Rev. B 104, 144412, Y. Yang, M. Li, I. Rousochatzakis, and N. B. Perkins

Quantum Liquid Candidate Ba₄Ir₃O₁₀

Ba₄Ir₃O₁₀ Measurements Suggest Quantum Liquid Candidacy

- 2D or 3D magnetic insulator
- Spin orbit coupled Ir ion with effective s = 1/2
- Magnetic order at $T_N \approx 0.2 \text{ K}$

npj Quantum Materials, 5(1), Article 1. Cao, G., Zheng, H., Zhao, H., Ni, Y., Pocs, C. A., Zhang, Y., Ye, F., Hoffmann, C., Wang, X., Lee, M., Hermele, M., & Kimchi, I. (2020).

Thermodynamic Measurements Suggest Ba₄Ir₃O₁₀ is a Quantum Liquid

Ba₄Ir₃O₁₀ quantum liquid state is destroyed upon adding disorder

- 2% non-magnetic substitution of Ba to Sr
- Magnetic order at 130 K (cf. $T_N \approx 0.2$ K)
- No more linear T features in heat capacity
- Reduced frustration ratio

bb Raman susceptibility (T = 10 K)

Ba₄Ir₃O₁₀ (no magnetic order) (Ba_{0.98}Sr_{0.02})₄Ir₃O₁₀ (magnetically ordered)

Phys. Rev. B 106, 075108 (2022)

A. Sokolik, SH, S. Roy, N. Pellatz, H. Zhao, G. Cao, I. Kimchi, and D. Reznik

Theoretical model: decoupled 1D chains

- 1D is tractable
- NB: Ba₄Ir₃O₁₀ is neither 1D nor consists of 1D chains
- Claim: at low *T*, 1D spinons fruitfully capture dynamics
- Ground state of *H* has fractional excitations

$$H = \sum_{j} J_1 \mathbf{S}_j \cdot \mathbf{S}_j + J_2 \mathbf{S}_j \cdot \mathbf{S}_{j+2}$$

No bb Raman operator for straight chains

$$R = \sum_{\mathbf{r}_1, \mathbf{r}_2} A(\mathbf{r}_{12}) (\mathbf{\hat{e}}_i \cdot \mathbf{r}_{12}) (\mathbf{\hat{e}}_s \cdot \mathbf{r}_{12}) \mathbf{S}_{\mathbf{r}_1} \mathbf{S}_{\mathbf{r}_2}$$
$$= 0$$

bb Raman operator for zig-zag needs J_2

- For $J_2 = 0$, $R \propto H$ (only elastic response)
- Minimal model for a continuum in spectrum needs both zig-zag ${\bf AND}$ $J_2>0$

$$H = \sum_{j} J_1 \mathbf{S}_j \cdot \mathbf{S}_{j+1} + J_2 \mathbf{S}_j \cdot \mathbf{S}_{j+2}$$
$$R_{\nu=1,2} = \sum_{j} \mathbf{S}_j \cdot \mathbf{S}_{j+\nu}$$

Fermionization of Raman operator

- Jordan-Wigner fermionization of spin operators
- Spinons are correct excitations in quantum liquid & in 1D toy model
- Approximate to free 1D spinon gas
- Fermionize Raman operator and FT
- NB: wavevectors normalized to projection of bonds onto longitudinal chain axis

$$R_{\nu=1,2} = \sum_{j} \mathbf{S}_{j} \cdot \mathbf{S}_{j+\nu}$$

$$R_{\nu=1,2} \propto \sum_{k,k',q} h_{kk'q}^{(\nu)} c_k^{\dagger} c_{k+q} c_{k'}^{\dagger} c_{k'-q}$$

$$H_{MF} = \sum_{k} \epsilon_{k} c_{k}^{\dagger} c_{k}$$
$$\epsilon_{k} = -\frac{\pi}{2} J_{\text{eff}} \cos(k)$$

Spinon Mean Field Theory

- Time evolve spinons
- Diagramatically expand 8 spinon correlation function on ground state with free propagator
- Most diagrams give elastic contributions

These do not

Mean field spectra of Ba₄Ir₃O₁₀

- 4-spinon continuum from two equivalent mean fields
- R_1 (dashed, blue)
- R₂ (dot-dashed, cyan)
- Both capture continuum
- Energy scale of bandwidth consistent with CW

$$I^{(\nu)}(\omega) \propto \int_{-\pi}^{\pi} dk \int_{-\pi}^{\pi} dq \sum_{k'} \frac{h^{(\nu)}(k,k',q)[h^{(\nu)}(k,k',q) - h^{(\nu)}(k,k',k'-k-q)]}{\sqrt{(2t\sin(q/2))^2 + (\epsilon_{k+q} - \epsilon_k - \omega)^2}} \times f(\epsilon_k)(1 - f(\epsilon_{k+q}))f(\epsilon_{k'})(1 - f(\epsilon_{k'-q}))$$

Ba₄Ir₃O₁₀ measurements suggest fragile quantum liquid state with gapless spinon excitations

- Broad hump arising from 4-spinon continuum in 1D toy model
 - Zig-zag chain + $J_2 > 0$ needed to capture hump within mean field for bb polarization
 - Two equivalent yet distinct mean field approaches (R_1, R_2) capture hump
- Strong phonon damping from phonon-spin coupling via spin-orbit interaction
- 2% non-magnetic Ba-to-Sr substitution precipitates magnetically ordered phase without hump, phonon damping: spinon features are fragile to disorder

Outline

Special thanks to the organizers!

Some Raman operators look like dimerization operators

- Zig-zag chain with *bc* polarization
- Assumes clean zig-zag chain without crystal dislocations

If RD were a Hamiltonian, its ground state would be dimerized

Crystal dislocations induce topological defects in dimerization domains of Raman operator

Crystal dislocations induce topological defects in dimerization domains of Raman operator

Do domain walls respond to magnetic field?

• Use tensor networks to find out

Yes: Domain walls respond to magnetic field

No defects

Two defects

Domain wall (orange) responds to magnetic field

Zero Field

Small Field

Magneto Raman Spectra from TEBD

1.0 0.8 - 1.5 0.6 - 1.0 ω 0.4 -0.5 0.2 0.0 0.0 0.2 0.4 0.6 0.8 h

No defects

Two defects

Raman operator bond profile probes $q \neq 0$ response

$$R = \sum_{j} f(j) \mathbf{S}_{j} \cdot \mathbf{S}_{j+1}$$
$$= \sum_{j,q} \tilde{f}_{q} \cos(qj) \mathbf{S}_{j} \cdot \mathbf{S}_{j+1}$$
$$= \sum_{q} \tilde{f}_{q} \left(\sum_{j} \cos(qj) \mathbf{S}_{j} \cdot \mathbf{S}_{j+1} \right)$$
$$= \sum_{q} \tilde{f}_{q} R_{q}$$

Raman operator bond profile probes $q \neq 0$ response

$$\int dt \ e^{i\omega t} \langle R_q(t) R_{q'}(0) \rangle = \sum_q |\tilde{f}_q|^2 \chi''(q,\omega)$$

Mean Field: Free Spinon Response follows $\chi_{ ho ho}''$

$$H = \sum_{k} -t\cos(k)c_{k}^{\dagger}c_{k}$$

Bosonized density-density response (no defects)

Bosonization: Giamarchi appendix. Also Sato, Katsura, Nagaosa PRL '12

Bosonized density-density response (two defects approximated by $\tilde{f}_q = \delta_{q,\pi \pm \frac{2\pi}{L}}$)

Free Spinons (K = 1)

Heisenberg (K = 1/2)

Summary & Questions

- $Ba_4Ir_3O_{10}$
 - S = 1/2 Mott insulator
 - Magneto Raman suggests quantum (spin) liquid behavior with gapless spin excitations
 - Spinons capture observations; unclear what mechanism produces them
- Topological defects beyond the Hamiltonian
 - Present in Raman response
 - Induced by crystal dislocations
 - Probe $q \neq 0$ response

Phys. Rev. B **106**, 075108 (2022) A. Sokolik, **SH**, S. Roy, N. Pellatz, H. Zhao, G. Cao, I. Kimchi, and D. Reznik

Temperature dependence of $Ba_4Ir_3O_{10}$ Raman susceptibility

Mean field temperature dependence

K = 1/2

K = 3/4