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1 Introduction

This set of lecture notes is designed to introduce to concept of magnetic superexchange to graduate level
physics students in an introductory quantum mechanics class. The topic is intended to demonstrate the
utility of perturbation theory in deriving an effective Hamiltonian.

We will begin with a brief review of fermionic field operators. Next, we introduce the Hubbard Hamilto-
nian which serves as a toy model in condensed matter physics to describe Mott insulators. With this model,
we perform the so called strong coupling expansion. Taking the deep Mott limit, we treat fermionic hopping
as a perturbation. At half-filling, we show that the lowest nonvanishing perturbative correction to the Hamil-
tonian occurs at second order. Finally, we show that this second order correction is the antiferromagnetic
Heisenberg Hamiltonian.

By the end of this lecture students should be able to

• follow algebraic manipulations of fermionic operators

• understand physical processes denoted by second quantized operators

• appreciate the utility of perturbation theory beyond energy corrections
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2 Elements of Second Quantization

For normalized fermionic states in the position basis, fi(r), we may construct a fully antisymmetrized
wavefunction by use of the Slater determinant

ΨSD(r1, . . . , rN ) =
1√
N !

∣∣∣∣∣∣∣∣∣
f1(r1) f2(r1) · · · fN (r1)
f1(r2) f2(r2) · · · fN (r2)

...
...

. . .
...

f1(rN ) f2(rN ) · · · fN (rN )

∣∣∣∣∣∣∣∣∣ (1)

In second quantization, however, we work in the particle number occupation basis. We label many-particle
Fock states by the number of fermions that occupy single-particle states. The vacuum state |Ω⟩ is the unique
state with zero particles.

Fermionic creation and annihilation operators act on Fock states and increase or decrease the particle
number respectively.

Letting i, j denote an arbitrary but unique labeling of quantum numbers, fermionic field operators
are defined by the following algebra

{ci, c†j} = cic
†
j + c†jci = δij (2)

and all other anticommutators zero.

From this we immediately have c2i = 0 and (c†i )
2 = 0. The vacuum state |Ω⟩ may be defined as the unique

state such that ci |Ω⟩ = 0 for all i.

Second quantization of single particle operators: Single particle operators may be second
quantized using their matrix representation. Given a matrix representation Mij of a single particle
operator, it is second quantized via

M =
∑
ij

c†iMijcj (3)

A review of second quantization may be found in [3].

3 Hubbard Hamiltonian

As a toy model to study insulators in condensed matter physics, we may use the second quantization
formalism to write down a Hamiltonian consistent with the energetics we expect for electrons. First, there
must be an energetic cost for electrons (with opposite spin projection) to be on the same lattice site.
Generically, there is Coulombic repulsion further away from on site, but this repulsion dies off exponentially
in the distance separating lattice sites [1]. We may further include a term that allows electrons to hop
between lattice sites by annihilating them on-site, and creating them on a neighboring site. In doing so we
obtain the Hubbard Hamiltonian.

The Hubbard Hamiltonian is given by

H = HU +Ht = U
∑
i

ni↑ni↓ − t
∑
⟨ij⟩σ

c†iσcjσ + h.c.

where U, t > 0, σ ∈ {↑, ↓}, niσ = c†iσciσ, and {ciσ, c†jσ′} = δijδσσ′ .

H is the Hamiltonian, and it tells us the total energy of the system. The potential energy is given by
HU . The term HU says there is an energetic cost, U > 0, when there are two fermions on the same lattice
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site, i. This is a simple way to capture Coulombic repulsion between electrons on a lattice. When t = 0, the
ground state energy of H = HU is minimized when all lattice sites are either unoccupied or singly occupied
by a fermion.

The term Ht is the kinetic energy. This term says that the energy of the system is lowered by an amount,
t, when a fermion “hops” from one lattice site to its nearest neighbor. Hopping does not affect the spin
of the electron. By convention we take the kinetic term to lower the total energy of the system, although
generically we may have t ∈ C. Complex hopping t is outside the scope of these notes. For the purposes of
superexchange, we take t ∈ R.

4 Perturbation Theory and Effective Hamiltonians

In this section, we will use perturbation theory to derive an effective Hamiltonian for H under some
reasonable constraints. First, we take a system with N sites and U ≫ t so that Ht is a perturbation.
Moreover we will work at half filling so that there is one electron per lattice site.

The unperturbed Hamiltonian H0 = HU . The ground state manifold has a spin degeneracy and spans
a Hilbert space of half-filled states denoted by H0. States in H0 are denoted by |ϕ⟩ ∈ H0. Explicitly,∑

σ∈{↑,↓} niσ |ϕ⟩ = |ϕ⟩ for all |ϕ⟩ ∈ H0.
The full Hamiltonian H = HU +Ht, however, spans a larger Hilbert space H. To compute the effective

Hamiltonian Heff, we will compute its matrix elements in the Hilbert space restricted to states at half-
filling. That is ⟨ϕ|Heff|ϕ′⟩ for all |ϕ⟩ , |ϕ′⟩ ∈ H0. These matrix elements may be computed using standard
perturbation theory [2].

To second order in perturbation theory, the effective Hamiltonian is given by

⟨ϕ|Heff|ϕ′⟩ = ⟨ϕ|HU |ϕ′⟩+ ⟨ϕ|Ht|ϕ′⟩+
∑
k/∈H0

⟨ϕ|Ht|k⟩ ⟨k|Ht|ϕ′⟩
E0 − Ek

(4)

We will first show that the zero and first order contributions vanish.

4.1 Zero Order Contribution

Since |ϕ⟩ , |ϕ′⟩ ∈ H0, they are at half-filling. Hence the total number of fermions on any |ϕ⟩ is always 1.
Algebraically, (ni↑ + ni↓) |ϕ⟩ = |ϕ⟩ for all i. Rearranging, we have ni↓ |ϕ⟩ = (1− ni↑) |ϕ⟩. Thus

⟨ϕ|HU |ϕ′⟩ = U
∑
i

⟨ϕ|ni↑ni↓|ϕ′⟩ = U
∑
i

⟨ϕ|ni↑(1− ni↑)|ϕ′⟩ = 0 (5)

Since ni↑(1− ni↑) = ni↑ − n2
i↑ = ni↑ − ni↑ = 0. The last equality follows since

n2
i↑ = c†i↑ci↑c

†
i↑ci↑ = c†i↑(1− c†i↑ci↑)ci↑ = c†i↑ci↑ − c†i↑c

†
i↑ci↑ci↑ = ni↑ − (c†i↑)

2(ci↑)
2 = ni↑ (6)

4.2 First Order Contribution

The first order contribution also vanishes. We note that H0 is not closed under the action of Ht.
Physically, the action of terms in Ht on any state |ϕ′⟩ ∈ H0 moves fermions from a given site i to a nearest
neighbor site j. Since |ϕ′⟩ is at half-filling, however, site j has 1 fermion. Moving a fermion from site i to
site j creates a doubly occupied site. Hence Ht |ϕ′⟩ /∈ H0 for any |ϕ′⟩ ∈ H0. Explicitly, Ht |ϕ′⟩ ∈ H \H0.

Since H is a Hilbert space, basis states in H are pairwise orthonormal. Therefore, if Ht |ϕ′⟩ /∈ H0 and
|ϕ⟩ ∈ H0, we must have ⟨ϕ|Ht|ϕ′⟩ = 0. This is because states in H0 are orthogonal to states outside of H0.
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4.3 Second Order Contribution

4.3.1 Single Particle Excitations

In this section we will show that the second order contribution is non-vanishing and given by

∑
k/∈H0

⟨ϕ|Ht|k⟩ ⟨k|Ht|ϕ′⟩
E0 − Ek

= −⟨ϕ|Ht

∑
j nj↑nj↓

U
Ht |ϕ′⟩ (7)

Inspecting the right-hand side, we may insert a resolution of the identity as follows

−Ht

∑
j nj↑nj↓

U
Ht = −Ht

∑
k∈H

∑
j nj↑nj↓ |k⟩ ⟨k|

U
Ht (8)

Where we sum over the full Hilbert space H. Let us inspect the term nj↑nj↓ |k⟩. We find

nj↑nj↓ |k⟩ =

{
0, |k⟩ ∈ H0

|k⟩ , |k⟩ /∈ H0, one doubly occupied site
(9)

For half-filled states, |k⟩ ∈ H0, we may use an argument similar to that in 4.1 to show the above result. For
|k⟩ /∈ H0 and with one doubly occupied site, we obtain the above result. Formally, we may ignore states
with more than one doubly occupied site. This is because matrix elements of the form ⟨ϕ|Ht|k⟩ ⟨k|Ht|ϕ′⟩
with |ϕ⟩ , |ϕ′⟩ ∈ H0 physically represent virtual tunning from the ground state manifold (half-filling) to itself
via an excited state |k⟩ with only one doubly occupied state.

To see this, first examine ⟨k|Ht|ϕ′⟩. The state |ϕ′⟩ is at half-filling, and the action of Ht creates all
particle-hole excitations which create one vacant site and one doubly-occupied site next to the vacancy. For
this matrix element not to vanish, |k⟩ must be one of these states. A similar argument holds for ⟨ϕ|Ht|k⟩.
Crucially, however, the state |k⟩ is the same for both matrix elements. Hence for the contribution to be
non-vanishing, |k⟩ must be a particle-hole excitation that connects |ϕ⟩ , |ϕ′⟩ via a single hopping term. By
restricting ourselves to matrix elements in H0, we need only consider the lowest lying excitations of the full
Hilbert space H.

With this in mind, we find

−⟨ϕ|Ht

∑
j nj↑nj↓

U
Ht |ϕ⟩ = −⟨ϕ|Ht

∑
k/∈H0

|k⟩ ⟨k|
U

Ht |ϕ⟩ (10)

States with one doubly occupied site have energy

Ek = ⟨k|H0|k⟩ = U
∑
j

⟨k|nj↑nj↓|k⟩ = U
∑
j

δkj ⟨k|k⟩ = U (11)

since the density-density term is only 1 on the doubly occupied site (i.e. where k = j if we label the singly
occupied site as k). The ground state manifold states have energy 0 since they have no doubly occupied
states. Thus −U = E0 − Ek and we have the desired result

−⟨ϕ|Ht

∑
j nj↑nj↓

U
Ht |ϕ⟩ =

∑
k/∈H0

⟨ϕ|Ht|k⟩ ⟨k|Ht|ϕ′⟩
E0 − Ek

(12)

4.3.2 Second Quantized form of Effective Hamiltonian

In the previous section we found the lowest order non-vanishing contribution to the effective Hamiltonian.
Here, we will write this contribution in terms of fermionic operators and show it is given by

Heff = −Ht

∑
j nj↑nj↓

U
Ht =

2t2

U

∑
⟨ij⟩σ

(
−ni↑nj↓ + c†i↓ci↑c

†
j↑cj↓

)
(13)
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Physically, the first term says it is energetically favorable for nearest neighbor spins to point in opposite
directions; the energy is lowered when nearest neighbor spins are anti-aligned. The second term says there
is an energetic cost to flip a spin on a given site along with all of its neighbors.

Let us inspect the term
∑

j nj↑nj↓ in the above sum. This term will give nonzero matrix elements when

there is at least one doubly occupied site. We can ensure this doubly occupied site exists, by sandwiching1

the density-density term between c†iσcjσ on the left and c†jσ′ciσ′ on the right, with i, j nearest neighbors.
Then

Heff = − t2

U

∑
⟨ij⟩σσ′

c†iσcjσ(nj↑nj↓)c
†
jσ′ciσ′ (14)

= − t2

U

∑
⟨ij⟩σσ′

c†iσcjσ(c
†
j↑cj↑c

†
j↓cj↓)c

†
jσ′ciσ′ (15)

=
t2

U

∑
⟨ij⟩σσ′

c†iσcjσ(c
†
j↑c

†
j↓cj↑cj↓)c

†
jσ′ciσ′ (16)

where in the last line we have performed one anti-commutation to normal order the density-density term.
Operator multiplication is associative, so we reorder the parentheses above.

Heff =
t2

U

∑
⟨ij⟩σσ′

(c†iσcjσc
†
j↑c

†
j↓)(cj↑cj↓c

†
jσ′ciσ′) (17)

We may normal order each bracketed term to find

c†iσcjσc
†
j↑c

†
j↓ = c†i↑c

†
j↓ − c†i↓c

†
j↑, cj↑cj↓c

†
jσ′ciσ′ = cj↑ci↓ − cj↓ci↑ (18)

where we have dropped quartic terms since H0 is not closed under their action (i.e. they do not contribute
to the matrix element). The effective Hamiltonian then reads

Heff =
t2

U

∑
⟨ij⟩σ

(c†i↑c
†
j↓ − c†i↓c

†
j↑)(cj↑ci↓ − cj↓ci↑) (19)

=
t2

U

∑
⟨ij⟩σ

c†i↑c
†
j↓cj↑ci↓ − c†i↑c

†
j↓cj↓ci↑ − c†i↓c

†
j↑cj↑ci↓ + c†i↓c

†
j↑cj↓ci↑ (20)

=
t2

U

∑
⟨ij⟩σ

−c†i↓c
†
j↑cj↑ci↓ + c†i↓c

†
j↑cj↓ci↑ +

∑
⟨ij⟩σ

−c†i↑c
†
j↓cj↓ci↑ + c†i↑c

†
j↓cj↑ci↓

 (21)

In the last line we have simply reordered the sum and broken it up via linearity. Note that the second sum
is equivalent to the first by interchanging i → j. Thus

Heff =
2t2

U

∑
⟨ij⟩σ

−c†i↓c
†
j↑cj↑ci↓ + c†i↓c

†
j↑cj↓ci↑ (22)

=
2t2

U

∑
⟨ij⟩σ

−c†i↓ci↓c
†
j↑cj↑ + c†i↓ci↑c

†
j↑cj↓ (23)

=
2t2

U

∑
⟨ij⟩σ

−ni↑nj↑ + c†i↓ci↑c
†
j↑cj↓ (24)

where in the penultimate line we have performed two anti-commutations.

1Formally these operators come from Ht. Expanding out Ht performing some algebraic manipulations gives us the same
result, but our physical intuition here for doubly occupied sites saves us from some calculations.
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To second order in perturbation theory, the effective Hamiltonian reads

Heff =
2t2

U

∑
⟨ij⟩σ

−ni↑nj↑ + c†i↓ci↑c
†
j↑cj↓ (25)

5 Heisenberg Hamiltonian

With very little physical motivation, we now second quantize spin operators on each site. While this step
is not well motivated a priori, applying it to our problem will provide us with some well needed physical
intuition.

Using (3), we second quantize the spin operators (ℏ = 1) as follows

Sz
i =

∑
σσ′

c†iσ

(
1

2
σz
σσ′

)
ciσ′ =

1

2
(c†i↑ci↑ − c†i↓ci↓) =

1

2
(ni↑ − ni↓) (26)

S+
i =

∑
σσ′

c†iσ
(
σ+
σσ′

)
ciσ′ = c†i↑ci↓ (27)

S−
i =

∑
σσ′

c†iσ
(
σ−
σσ′

)
ciσ′ = c†i↓ci↑ (28)

Physically, Sz
i represents the local magnetization on site i. We may compute this by counting the number

of spin up fermions on the site and subtracting the number of spin down fermions on the same site. The spin
raising and lowering operators amount to flipping the spin of a fermion on a given site, and we represent
this as an on-site hopping term as above.

Returning to the effective Hamiltonian, we may summing over σ, perform an index change i → j, and
perform some anticommutations allows us to rewrite it as

Heff =
2t2

U

∑
⟨ij⟩

−(ni↑nj↑ + ni↓nj↑) + c†i↓ci↑c
†
j↑cj↓ + c†i↑ci↓c

†
j↓cj↑ (29)

We recognize the positive quartic terms as S+
i S−

j + h.c. so that

Heff =
2t2

U

∑
⟨ij⟩

−(ni↑nj↑ + ni↓nj↑) + (S+
i S−

j + h.c.) (30)

This motivates studying the density-density terms may as related to Sz
i S

z
j .

2Sz
i S

z
j =

1

2
(ni↑ − ni↓)(nj↑ − nj↓) =

1

2
(ni↑nj↑ + ni↓nj↓ − ni↑nj↓ − ni↓nj↑) (31)

Within H0, ni↑ + ni↓ = 1 (half-filling). Using this constraint on i, j,

2Sz
i S

z
j =

1

2
((1− ni↓)nj↑ + (1− ni↑)nj↓ − ni↓nj↑ − ni↑nj↓) (32)

=
1

2
((nj↑ + nj↓)− 2ni↓nj↑ − 2ni↑nj↓) (33)

= 1− ni↓nj↑ − ni↑nj↓ (34)

The quartic terms are the density-density terms in the effective Hamiltonian. Hence we have

Heff =
2t2

U

∑
⟨ij⟩

2Sz
i S

z
j + (S+

i S−
j + h.c.)− 1

2
(35)
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We find that the low-energy effective theory of a Hubbard Hamiltonian at half-filling in the strong
coupling limit (U ≫ t) is the antiferromagnetic Heisenberg model:

Heff =
4t2

U

∑
⟨ij⟩

(
Si · Sj −

1

4

)
(36)

At low energies, the predominant excitations of the Hubbard model at half-filling are antiferromagnetic.
Classically, such a Hamiltonian causes spins on neighboring lattice sites to align in opposite directions.
Quantum mechanical effects on this model have been extensively studied, but they are outside the scope of
these notes.
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